BioPHP - Discriminatory Power
Original code submitted by josebaCode bellow is covered by GNU GPL v2 license.
Description
Last change: 2010/10/18 21:09 | Recent Changes | Original descriptionComputes discriminatory poweras described by Hunter.
Code
Last change: 2010/10/18 21:09 | Recent Changes | Download | Original code and
<html> <head> <title>Discriminatory power Calculator</title> </head> <body bgcolor=FFFFFF> <center> <h1>Discriminatory Power Calculator</h1> <table width=600><tr><td> The <a href="<? print $_SERVER["PHP_SELF"]; ?>?show=formula">Discriminatory Power (D)</a> is the average probability that the typing system will assign a different type to <b>two unrelated strains randomly sampled</b> in the microbial population of a given taxon. <p>This tool has been created to help calculate this parameter, and source code is available at <a href=http://www.biophp.org/stats/discriminatory_power/>biophp.org</a> <hr></td></tr></table> <p> <?php // author Joseba Bikandi // license GNU GPL v2 // biophp.org error_reporting(0); // if formula is requested, show it if ($_GET["show"]=="formula"){print_formula();die;} if (!$_POST){ // when nothing is posted, an example is shown // example is included within the form print_form("40,30,20,10",100,4,"0.7071"); // example is explained print_example(); }else{ // when data is posted, discriminatory power is computed // get the data $values=$_POST["values"]; $values=preg_replace("/ /","",$values); // just in case there are spaces // parse data to an array $data_array=preg_split("/,/",$values,-1,PREG_SPLIT_NO_EMPTY); // compute discriminatory power $result=discriminatory_power($data_array); // print results print_form($values,$result["N"],$result["types"],$result["D"]); } //######## compute discriminatory power // input must be an array function discriminatory_power($data_array) { $temp=0; $N=0; // number of strains foreach($data_array as $key => $val){ $temp+=$val*($val-1); $N+=$val; } $result["D"]=round(1-($temp/($N*($N-1))),4); $result["N"]=$N; $result["types"]=sizeof($data_array); return $result; } //######## is integral function str_is_int($str) { $var=intval($str); return ("$str"=="$var"); } //########print form function print_form($values,$N,$S,$result){ ?> <table width=600> <tr><td align=center bgcolor=DDDDFF> <form action="<? print $_SERVER["PHP_SELF"]; ?>" method=post> Add number of samples assigned to each type separated by comma: <p> <input type=text name=values value="<? print $values; ?>" size=60><p> <input type=submit value="Calculate Discrimination Power"> </form> <p> <table> <tr><td><b>Number of unrelated strains</b>:</td><td align=right><? print $N; ?></td></tr> <tr><td><b>Number of types</b>:</td><td align=right><? print $S; ?></td></tr> <tr><td><b>Discriminatory power</b>:</td><td align=right><? print $result; ?></td></tr> </table> </td></tr> </table> <? } //########print example function print_example(){ ?> <table width=600> <tr><td> <b>Example</b>: a novel typing system was used to type 100 randomly sampled <i>E. coli</i> strains. Four types were obtained, and to each type the following number of strains was assigned: <p style="margin-left: 40px;">Type A: 40 strains <br>Type B: 30 strains <br>Type C: 20 strains <br>Type D: 10 strains</p> <p>With this data, discriminatory power was calculated and its value was 0.7071 </td></tr> </table> <? } // #################### print example function print_formula(){ ?> <table width=600> <tr><td> <b>Reference</b> <p>Hunter P. Reproducibility and indices of discriminatory power of microbial typing methods. J Clin Microbiol 1990; 28: 1903-5. <a href=http://www.pubmedcentral.gov/articlerender.fcgi?tool=pmcentrez&artid=268075>PubMed</a>. <p>A Discriminatory Power (D) value of 1.0 would indicate that a typing method was able to distinguish each member of a strain population from all other members of that population. Conversely, an index of 0.0 would indicate that all members of a strain population were of an identical type. An index of 0.50 would mean that if one strain was chosen at random from a strain population, then there would be a 50% probability that the next strain chosen at random would be indistinguishable from the first. <p> <div align=right><a href="<? print $_SERVER["PHP_SELF"]; ?>">Start using this tool</a></div> </td></tr> </table> <? } ?> </center> </body> </html>